
Behavior Capture and Test for Verifying Evolving Component-Based Systems

Leonardo Mariani
Universit̀a of Milano Bicocca

Dipartimento di Informatica, Sistemistica e Comunicazione
20126 Milano, Italy

mariani@disco.unimib.it

Research Area: Run-time verification of evolving
component-based systems

1. Verification of Evolving Component-Based
Systems

Component-Based System (CBS) technology supports
rapid development of complex heterogeneous evolving sys-
tems by enhancing reuse and adaptability. CBSs can be ex-
tended and adapted by modifying one or more components.
The same component can be used in several systems, and
the same system can be deployed in many configurations
that differ for some components. Traditional test and anal-
ysis techniques make little use of quality information about
components and subsystems when testing the whole sys-
tem. Thus, reusability for quality assessment and reduction
of quality related costs are not fully exploited.

Moreover, verification of CBSs is hardened by the fre-
quent lack of information about components that are pro-
vided by third parties without source code and with incom-
plete documentation. This framework reduces the applica-
bility of many traditional testing and analysis techniques for
CBSs. Main goal of my PhD research is the definition and
experimentation of testing and analysis techniques that al-
low to efficiently test CBSs in presence of limited informa-
tion about design and code by reusing behavioral informa-
tion that can be gathered from previous usage of the com-
ponents.

2. Behavior Capture and Test

My PhD research aims at using run-time information to
automatically derive test cases for components when used
in different contexts. I assume that the information recorded
on the behavior of a componentC in a specific systemS can
be used both for testing a replacing component, i.e., a new
component that replacesC in S, and for testing component
C when used in a new system. Our technique, hereafter

called Behavior Capture and Test (BCT), first synthesizes
component behavior by observing executions and inferring
invariants, and then monitors executions of components to
identify possible faults. We use the recorded behaviors also
to create test suites and oracles to test components in dif-
ferent systems. The approach is based on five main steps:
(1) Deploy time: Automatic generation and installation of
recorders; (2)Run-time: Recording of executions (single
behaviors); (3)Run-time: Distilling I/O and interaction in-
variants; (4)Run-time: Filtering single behaviors; (5)Re-
gression: Automatic verification and testing.

Step 1: Generation of the Recorders We generate two
kinds of recorders for a component:StimuliandInteraction
Recorders. Stimuli recorders are used to record requests
and corresponding results, while interaction recorders are
used to record patterns of interactions with other compo-
nents. The behavior of the recorders is largely independent
from the target components and they can be automatically
generated from an interface or an interface specification. In-
stalling recorders require altering the binding mechanism
of the system. So far, we have manually developed several
recorders. We are studying techniques for automatic gen-
eration and installation of recorders. In particular, we are
investigating the possible degree of automatization for dif-
ferent technologies, e.g., Enterprise Java Beans.

Step 2: Registration of Single Behaviors Whenever a
component issues a request, the I/O recorder stores pa-
rameters and results. Primitive data are recorded directly.
Complex objects are processed before being recorded. Pro-
cessing consists of extracting state information by recur-
sive invocation of inspectors up to a given depth. In-
spectors are methods of the class that return state infor-
mation without altering the state. Inspectors can be man-
ually identified by the users or automatically inferred by
matching methods’ signature with syntactic rules. For ex-
ample, a method whose template signature is<anyType>
get<anyName> (void) is assumed to be an inspector.
We are currently refining the technique by adding validation



of the heuristically selection of inspectors.
Recording introduces computational overhead. To face

this drawback we are investigatingrecording policiesthat
limit the number of recorded single behaviors. We are cur-
rently studying optimal tradeoffs between the amount of
recorded information and computational costs.

Step 3: Distilling Invariants We are distilling two kinds
of invariants, I/O and interaction invariants, which summa-
rize the behavior of the component. I/O invariants describe
the behavior of a specific service and are computed with an
extension of Daikon [4]; our extension allows considering
complex objects as well as simple objects. Interaction in-
variants are computed by inferring a regular expression that
resumes all observed pattern of interactions. The elements
of the alphabet areC.S() , whereC is the name of a com-
ponent andS is the name of a service implemented by the
component. The semantic of this element denotes the invo-
cation of the serviceS() implemented by the componentC.
The invariant is inferred by merging observed behaviors and
by applyinggeneralization rules. Generalization rules mod-
ify the regular expression so that the new regular expression
generates a language subsuming the older one. Example of
generalization rules are: “aaa is mapped toa* ” where a
is an element of the alphabet and “AAA is mapped toA* ”
whereA is a regular expression. The definition of a com-
prehensive set of rules is one of the goals of my PhD thesis.

In many work, behavioral information is synthesized
from scenario specifications [11, 1]. A scenario specifica-
tion describes all stimuli generated in the system during a
specific execution. The synthesis of several scenario spec-
ifications produces a LTS describing the behavior of the
whole system. In our approach, we incrementally refine the
regular expression describing the behavior of each service
by observing only local interactions. Information synthe-
sized in the two approaches is very similar, but it differs
on both the granularity and accuracy. Scenario synthesis
describes the system- and component-level behavior, while
interaction invariants describe the service-level behavior.
Moreover, LTS may contain some undesired behaviors due
to the synthesis process, e.g., implied scenarios [7]. In our
case, we explicitly choice to introduce service-level gener-
alization rules to both lessen the probability to exclude an
admissible behavior and to reduce the size of the regular
expressions. Next, we intend to compare service-level gen-
eralization rules with scenario synthesis to exploit benefits
and drawbacks of both approaches.

Step 4: Filtering Single Behaviors Storing all single be-
haviors requires an enormous amount of memory, on the
other hand single behaviors are very useful when used as
test cases, and hence we are studying differentselection
policies for selecting relevant single behaviors, based on
different coverage criteria, impact of the single behavior on

inferred invariants and tester’s interests.

Step 5: Automatic verification and testing We identi-
fied three very general updates that can be performed in
a system and that enable the application of the BCT tech-
nique: (1) a component in use in a system is added to a dif-
ferent system; (2) an existing component is replaced with a
new component; (3) an existing component is replaced with
a component in use in a different system.

In the first case, it is possible to take advantage of in-
formation gathered from executing the component as part
of a different system; in the second case it is possible to
take advantage of information gathered from executing the
replaced component as part of the target system; finally, in
the third case, it is possible to take advantage of both kinds
of information.

Single behaviors are used to generate both test suites and
oracles. A test suite for componentC can be generated by
assemblingC’s single behaviors, while a test suite for com-
ponentC’ (whereC’ is the component replacingC) can
be generated by selectingC’s single behaviors that are still
executable (some updates onC may have turned to unex-
ecutable some single behaviors). We intend also to gener-
ate two kinds of oracles: strong oracles and weak oracles.
Strong oracles require that the behavior observed while ex-
ecuting the corresponding test suite matches the behavior
observed while executing the old version of the component.
Weak oracles require that invariants are not violated while
executing the test suite.

Both I/O and interaction invariants are used to monitor
the executions of the target component. When an invari-
ant is violated a warning is generated and interpreted by the
user. We are still investigating all possible use of warnings;
some examples are faults detection, derivation of user op-
erational profiles and discovering of functionality never or
rarely used.

When updating the system by replacing an existing com-
ponent with another existing component, it is possible to
formally match both interaction and I/O invariants. We are
studying possible analysis based on invariants, preliminary
ideas concern conflicts detection, derivation of component
operational profiles and feedback for testing.

3. Related Approaches

Although testing and verification of CBSs are addressed
by many authors, only few make use of in-field data. Ex-
isting testing techniques for CBSs do not take into account
the specific way a system is used because testing is per-
formed from the component assembler before the system is
deployed. To overcome this inconvenience, the Perpetual
Testing approach proposes to shift to the user-environments
part of the test obligations that are not completely fulfilled



during the testing phase [9]. Our approach exploits the
main principles underlying Perpetual Testing in the case
of CBSs. Many run-time verification techniques for CBSs,
e.g., [3, 2, 5], are based on some specifications. These ap-
proaches are not always applicable to CBS where specifica-
tions are not often available.

Existing approaches to verification and testing using in-
field data require the instrumentation of the source code.
BCT wraps components, thus requires no code alteration.
Wrapping is harder to obtain with respect to code instru-
mentation, but it has two main benefits: it is applicable to
components that are not been developed to support a partic-
ular kind of analysis and leaves the system designers free to
install wrappers enabling the analysis they prefer.

For example, McCamant and Ernst infer pre- and post-
conditions of the services implemented in a component by
monitoring executions [6]. Formal matching of pre- and
post-conditions can be used for predicting possible faults
that can derive from updating components. If the source
code is not available, the approach is applicable only to
components that exchange scalar and structured data types,
and considers only the interactions of the system with the
component and not the interactions of the component with
the system. On the contrary, the existing implementation
of BCT computes invariants for complex objects and takes
advantage of the object’s internal structure to perform very
accurate inference. Moreover, BCT invariants will be used
for both generating monitors and matching synthesized be-
haviors, thus widening the spectrum of applicability.

Orso et al. gather field data both to predict impact of up-
dates and to drive the regression testing [8] (regression test
selection, test suite prioritization and test suite augmenta-
tion). Both BCT and Orso et al. approaches address man-
agement of side effects, but they focus on different tech-
niques: BCT uses run-time verification, while Orso et al.
use testing. For the moment, both test suite prioritization
and selection are neglected in BCT, while automatic test
suite augmentation (that is not possible in the Orso et al.
approach) is one of the functionality foreseen for BCT.

Rodriguez monitors user activities to infer the way the
system is used [10]. Rodriguez’s approach has been used
for navigability testing of web sites, but the idea can be ex-
tended to CBSs too. In BCT, both I/O and interaction invari-
ants specify how a component is used but it could be diffi-
cult to rebuild the user operational profile from information
about the usage of single components. Moreover, BCT ne-
glects non-functional properties such as usability. In future
activities we intend to further investigate both derivation of
operational profiles and non-functional properties.

4. Conclusions and Future Work

This paper describes the main elements of BCT, the first
attempt to combine in-field data extraction, run-time veri-
fication, invariant detection and testing in a unique frame-
work for verifying CBSs. The technique is based on the
derivation of invariants from information on in-field behav-
ior of components. Such invariants are used to automati-
cally derive test cases and monitors for new systems that
include such components. The early experimental results
demonstrate the feasibility of the approach. We are cur-
rently developing prototypes to verify the extent of autom-
atization of the technique and to collect experimental data
to verify our hypothesis and identify weakness of the ap-
proach. Our goal is to fully refine the technique, identify
limits and advantages, and define the field of applicability.

References

[1] R. Alur, K. Etessami, and M. Yannakakis. Inference of Mes-
sage Sequence Charts. Inproceedings of 22nd International
Conference on Software Engineering, pages 304–313, 2000.

[2] M. Barnett and W. Schulte. Spying on components: A run-
time verification technique. Inproc. of Work. on Specifica-
tion and Verification of Component-Based Systems, 2001.

[3] S. H. Edwards. A framework for practical, automated black-
box testing of component-based software.Journal of Soft-
ware Testing, Verification and Reliability, 11(2), 2001.

[4] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sup-
port program evolution.IEEE Transactions on Software En-
gineering, 27(2):99–123, February 2001.

[5] K. Havelund and G. Rosu. Synthesizing monitors for safety
properties. Inproceedings of the Int. Conf. on Tools and Al-
gorithms for the Construction and Analysis of Systems, vol-
ume 2280 ofLNCS, pages 324–356. Springer Verlag, 2002.

[6] S. McCamant and M. D. Ernst. Predicting problems caused
by component upgrades. Inproc. of 9th European software
engineering conf. and 10th ACM SIGSOFT int. symp. on
Foundations of software engineering, pages 287–296, 2003.

[7] H. Muccini. Detecting implied scenarios analyzing non-
local branching choices. Inproc. of Int. Conference on Fun-
damental Approaches to Software Engineering, 2003.

[8] A. Orso, T. Apiwattanapong, and M. J. Harrold. Leverag-
ing field data for impact analysis and regression testing. In
proc. of the 9th European software engineering conf. and
10th ACM SIGSOFT international symp. on Foundations of
software engineering, pages 128–137, 2003.

[9] C. Pavlopoulou and M. Young. Residual test coverage mon-
itoring. In proceedings of the 21th International Conference
on Software Engineering (ICSE’99), pages 277–284, 1999.

[10] M. G. Rodriguez. Automatic data-gathering agents for re-
mote navigability testing. IEEE Software, 19(6):78–85,
November/December 2002.

[11] S. Uchitel, J. Kramer, and J. Magee. Synthesis of behavioral
models from scenarios.IEEE Transactions on Software En-
gineerings, 29(2):99–115, February 2003.


