
Self-healing Strategies For Component Integration Faults

Hervé Chang, Leonardo Mariani, Mauro Pezzè

University of Milano Bicocca

Department of Informatics, Systems and Communication

viale Sarca, 336 – 20126 Milan, Italy

{chang, mariani, pezze}@disco.unimib.it

Abstract

Software systems increasingly integrate Off-The-Shelf

(OTS) components. However, due to the lack of knowledge

about the reused OTS components, this integration is frag-

ile and can cause in the field a lot of failures that result in

dramatic consequences for users and service providers, e.g.

loss of data, functionalities, money and reputation. As a

consequence, dynamic and automatic fixing of integration

problems in systems that include OTS components can be

extremely beneficial to increase their reliability and miti-

gate these risks.

In this paper, we present a technique for enhancing

component-based systems with capabilities to self-heal

common integration faults by using a predetermined set of

healing strategies. The set of faults that can be healed has

been determined from the analysis of the most frequent in-

tegration bugs experienced by users according to data in

bug repositories available on Internet. An implementation

based on AOP techniques shows the viability of this tech-

nique to heal faults in real case studies.

1 Introduction

Modern software systems increasingly use Off-The-

Shelf (OTS) components to build large scale applications,

reduce system development costs and reuse third-party ex-

pertise. A wide range of ready-to-use commercial and open-

source components are available to developers, includ-

ing runtime platforms and middleware (e.g., Apache http,

JBoss AS, messaging systems), frameworks (e.g., Spring,

Struts), DBMS (e.g., MySQL, PostgreSQL) and application

libraries (e.g., logging frameworks, XML parsers). Unfor-

tunately, since OTS components are implemented indepen-

dently and reused in partially known contexts, their integra-

tion within actual systems is challenging and can introduce

subtle integration faults.

While syntactical integration problems are well-

addressed by compilers and type checking systems [15], se-

mantic faults are more subtle to be revealed because they

are related to the functional behavior of components. A re-

cent study of bug characteristics on the Apache web server

and Mozilla softwares indicates that semantic bugs are in-

creasingly dominant [19]: 81-86% of failures are caused by

semantic faults consisting of wrong implementations, miss-

ing features, missing cases, typos and improper exception

handling. In the total number of bugs, 96-98% of them are

likely to cause incorrect functionality and 42-44% of them

are likely to cause system crashes, thus threatening systems

functionality and availability.

Classic verification and validation techniques focus on

minimizing the introduction of semantic faults at design-

time, and removing the defects introduced at development-

time. Well known examples are defensive programming,

formal verifications, static analysis and testing [8, 22]. Even

if useful, these techniques are insufficient to remove all the

faults, especially because the many different configurations

and situations that may exist in the field cannot be foreseen.

Self-healing techniques represent a complement to tra-

ditional testing and verification techniques by enhancing

systems with capabilities to automatically detect and repair

software errors in the field [17].

There exist several techniques to detect semantic errors

in the field, e.g., exception handling frameworks integrated

in modern languages, such as Java or .NET, can be used

to detect general unexpected events related to both sys-

tems’ behavior and interactions between systems and their

environment [9]; assertions can be used to verify whether

boolean expressions that must hold at given program points

hold at run-time [21]; and ACID transactions can be used to

detect and manage improper use of shared resources [16].

While extremely useful for error detection, these techniques

often do not provide associated healing mechanisms, thus

cannot be used to repair the errors once detected.

In this paper, we focus on healing faults that result in

raised exceptions, which represent a relevant portion of pos-



sible failures. For example, a recent study on 3 widely-used

J2EE application servers (Geronimo, JBoss AS and JOnAS)

reports that 70% of the failures are manifested by excep-

tions [18].

Exception frameworks provide mechanisms and con-

structs to implement suitable exception handlers aimed at

managing exceptions and recovering from errors. However,

because it is difficult to write correct exception handlers,

exception mechanisms are currently not used at their best to

recover from errors. In practice, they usually do nothing or

apply very general exception-handling strategies. A recent

field study of 32 Java and .NET applications shows that the

amount of code used in error handling is much less than ex-

pected (only 3-7% for Java, 3% for .NET) [4]. Moreover,

when exception handlers exist, they usually execute general

actions (e.g., exception propagation, graceful degradation

and termination) which are likely to cause systems to mis-

behave, disrupt their services or crash, e.g., 12-16% of the

70% failures reported in [18] appear to be caused by poor

exception handling.

The self-healing technique presented in this paper cap-

tures exceptions generated by semantic integration faults

between core business applications and the various OTS

components they may use (runtime platforms, libraries,

etc.) and applies predetermined healing strategies to re-

cover from failing operations. When strategies succeed

in healing executions, execution can safely proceed. For

example, consider an application that uses the Apache

HTTP-Client library1. A call to the constructor of the

class GetMethod(String uri) with the uri parame-

ter "http://website/img/logo[1].gif" will return the

exception java.lang.IllegalArgumentException2,

which may cause a failure at the caller side. Our tech-

nique is able to heal the execution of that constructor op-

eration by automatically intercepting the raised exception,

fixing the value of the uri parameter and invoking again the

GetMethod constructor with the new parameter value.

The classes of faults that can be healed by the solution

presented in this paper have been determined by analyzing

bug reports in open repositories3 available on the Web and

selecting the most common semantic integration faults that

cannot be healed by patching OTS. Examples of such inte-

gration faults are: misusing OTS API, using faulty or dep-

recated methods that have not been fixed across versions

for technical or cost-effectiveness reasons, or failing in cor-

rectly setting up the execution environment where OTS are

reused. For each selected class of faults, we determined

(1) the exception that is raised when a fault in the con-

1http://hc.apache.org/httpcomponents-client/index.html
2This example is related to a real bug reported at

http://issues.apache.org/jira/browse/HTTPCLIENT-678.
3We use “bug repository” to refer to issue tracking systems that con-

tain both faults reports and features requests like Bugzilla and JIRA sys-

tems.

sidered class causes a failure, (2) the conditions that must

be checked in the field to verify that a raised exception is

caused by a fault that can be healed, and (3) the healing

strategy that must be executed to repair a failing execution

caused by a known fault.

Each known fault is associated with a healing connector

that can be plugged into target systems to inject healing ca-

pabilities. A healing connector is activated when exceptions

generated by known faults are raised. Every time a heal-

ing connector is activated, it checks whether it identifies a

known fault by verifying that some conditions hold, and ap-

plies the associated healing strategies if it is the case. Oth-

erwise, the raised exception is simply propagated back to

the caller component. Healing connectors are used by sys-

tem developers as black box elements, i.e., developers plug

them into their systems and if any of the faults that can be

healed exist, they are automatically fixed at run-time. Since

healing connectors are activated only upon exceptions, they

introduce no overhead in successful executions.

The rest of the paper is organized as follows. Section 2

presents the process that we followed for designing the heal-

ing strategies presented in this paper. Section 3 describes

their implementation using AOP techniques. Section 4

presents real problems that can be automatically healed

with our approach. Section 5 discusses related work. Fi-

nally, Section 6 concludes and presents our future research

agenda.

2 Designing Healing Strategies

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
����

healing connectors

3) implementation 

1) analysis

Bug reports
2) design

Healing strategies

Healing connectors

Developer

Repository of
4) storing

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

Figure 1: The four steps of the process to design the healing

strategies.

We identified healing strategies and implemented heal-

ing connectors for common integration problems associated

with widely used OTS components and middleware accord-

ing to the process shown in Figure 1. We concentrated on

OTS components and middleware because they are reused

across many systems, and several similar integration faults

tend to be present in different applications that integrate the



same components and middleware.

At the analysis step, we browsed bug repositories related

to OTS components and analyzed the characteristics of ex-

perienced bugs contained in the bug reports, specifically fo-

cusing on semantic integration faults that are manifested by

raised exceptions. So far, we analyzed open bug repositories

of the Sun standard JDK and its libraries4, the Spring frame-

work5, the JBoss platform6 and various systems hosted in

the Apache software foundation7. We also studied the nor-

mal behavior of target OTS components and identified the

root cause of failures. In the best cases, this analysis allows

us to: i) identify the experienced semantic bugs, ii) discover

the root-causes of the failures and iii) extract (when avail-

able) the fixes to be applied in the field.

At the design step, healing strategies are designed based

on the information extracted at the previous step. The heal-

ing strategies address integration faults with highly reused

OTS components and can be used to fix errors in all systems

that misuse the analyzed OTS components in a known way.

The rest of this paper gives examples of healing strategies

for different analyzed OTS components. The set of healing

strategies can be extended by studying other OTS compo-

nents following this same process. Our analysis conducted

so far leads us to identify four classes of semantic faults

related to individual operations and to propose the corre-

sponding healing strategies.

Once identified, we implement these strategies as heal-

ing connectors. These healing connectors are stored in a

repository for future use by developers. Strategies are man-

ually designed to implement specific healing logics that are

best suited to heal the corresponding semantic faults, and

also incrementally whenever faults are experienced and bug

fixes identified.

Developers can also follow our same process to extend

the set of faults that can be healed. Note that in most cases,

patching the target OTS components does not work because

integration faults depend from the specific way an OTS is

used and can be patched only when clients of OTS compo-

nents are available.

Analysis of faults resulted in 29 different healing strate-

gies. Our final ambition is to build a large number of heal-

ing strategies that can be seamlessly plugged into existing

component-based systems to heal executions for widely (re-

)used OTS components. Table 1 summarizes the OTS com-

ponents that we analyzed and the number of healing strate-

gies defined for each OTS component and middleware. A

more detailed report is available on the Web8.

The rest of this section presents the proposed healing

4http://bugs.sun.com/
5http://jira.springframework.org/
6http://jira.jboss.org/
7https://issues.apache.org/
8http://www.lta.disco.unimib.it/lta/personalPages/herveChang/recovery/

OTS components Category
Nb. of

strategies

Sun Java SE (JDK)a Java runtime plat-

form
18

Optional Sun Java li-

brariesb Java libraries 1

Spring frameworkc Java/JEE applica-

tion framework
2

JBoss ASd JEE application

server
2

Apache ActiveMQe Message broker 1

Apache HTTP Compo-

nentsf

HTTP protocol li-

braries
2

Apache Cactusg Server-side unit-

test framework
3

ahttp://java.sun.com/javase/ ehttp://activemq.apache.org/
bhttp://developers.sun.com/ f http://hc.apache.org/
chttp://www.springframework.org/ ghttp://jakarta.apache.org/cactus/
dhttp://www.jboss.org/jbossas/

Table 1: Studied OTS components and number of designed

strategies.

strategies. Since different faults impose different kinds of

reactions, we classified faults that can be healed and we cor-

respondingly defined categories of healing strategies.

2.1 Classes of Faults

In our early study, we identified four major classes of

problems that can cause the execution of a method to result

with an exception: invalid method parameters fault, wrong

method usage fault, faulty method implementation and en-

vironment fault.

We have an invalid method parameter fault when a

caller component invokes a method of a server compo-

nent with parameter values that do not satisfy callee’s

expectations, such as it may happen for numeric val-

ues outside the expected range or malformed strings.

This problem often results with an exception of type

IllegalArgumentException. The caller component is

responsible for this kind of problems because it is the gen-

erator of the incorrect inputs.

We have a wrong method usage fault when an opera-

tion is invoked even if the server component cannot serve

it. Typical examples are missing initialization steps and

incidental use of dead connections. A wrong method us-

age can result in the generation of various exceptions. The

most frequent ones are IllegalStateException and

MessagingException. The caller component is respon-

sible for this kind of problems because it is the generator of

the unexpected call.

We have a faulty method implementation when an oper-



ation includes an implementation fault. Typical examples

of faulty methods that may be addressed with the technique

presented in this paper are operations that do not correctly

handle special characters and faulty algorithms due to miss-

ing cases. The execution of a faulty method can result in

various exceptions, depending case by case. Component de-

velopers are responsible for this kind of problems because

they released faulty components.

We have environment faults which are caused by the in-

teraction between the applications and their execution en-

vironments. Typical examples are missing deployment de-

scriptors and missing class files. Environment problems can

result in the generation of several exceptions. Two frequent

cases are IOException and ClassNotFoundException.

System administrators who deploy systems in running envi-

ronments are responsible for avoiding such problems.

If we consider the case of the HTTP-Client library ex-

ample presented in the introduction, the described problem

belongs to the first category since the characters ’[’ and ’]’

in the string parameter are invalid for URIs, according to

the RFC-23969.

2.2 Healing Strategies

We designed four categories of healing strategies to ad-

dress the four classes of faults presented in the previous sec-

tion. Healing strategies aim at healing the execution of the

failed operation and restore the correct functionality.

Since accessibility to component internals are usually

limited or impossible for OTS components, our technique

only relies on information provided by interfaces (meth-

ods signature, declared exceptions, java documentation...).

Healing strategies are actuated at component interfaces

without requiring any knowledge of component internals as

well.

In this paper, our approach to heal executions is based on

retrying the failed operation. However, as the retry model

is effective for transient failures but insufficient to heal the

deterministic semantic faults described above, the proposed

strategies also perform various operations before retrying

the failed original invocation. These changes do not affect

component implementations but only concern actions that

target component interfaces or the execution environment.

In particular, we elaborated the following four categories

of healing strategies, which have a one-to-one mapping with

the fault categories: change parameter and retry the failed

operation, call operations before retrying the failed opera-

tion, replace the failed operation with other operations, and

modify the environment and retry the failed operation.

The change parameters + retry strategy performs

changes on parameters of the called operation followed by a

9www.ietf.org/rfc/rfc2396.txt

retry invocation. It can be used to heal from invalid method

parameters. Examples of concrete healing actions that we

implemented for some of the common misuses of OTS oper-

ations are remove extra white-spaces, add a missing trailing

slash, and change a parameter value with a default one.

The call operations + retry strategy performs calls to

other operations before retrying the original one. It can be

used to heal incorrect usage of OTS interfaces. Examples

of concrete healing actions that we implemented for some

of the common misuses of OTS components’ interfaces that

we identified in the analysis phase are adding a missing ini-

tialization step, and (re-)establishing connections before us-

ing them.

The replace calls strategy replaces the original invoca-

tions with a different invocation sequence. It can be used

to heal from faulty methods. Examples of concrete heal-

ing actions that we implemented for some of the common

faulty methods that we identified in the analysis phase is to

replace the original invocation with another invocation to a

non-faulty but equivalent interface method of a same OTS

component.

The change environment + retry strategy performs

changes in the environment followed by a retry. It can be

used to heal from environment faults. Healing actions may

include changes on almost everything that is external to the

application but can affect its execution (file system, net-

works protocols or memory, or standard or third-party li-

braries, etc.). Examples of concrete healing actions that we

implemented for some of the common environment faults

that we identified in the analysis phase are programmati-

cally creating the necessary directory for persisting data and

dynamically loading missing class files.

In our previous example related to the HTTP-Client li-

brary, the healing strategy designed for this OTS com-

ponent would detect the invalid characters ’[’ and ’]’

in the parameter and would replace them with their re-

spective escape characters ’%5B’ and ’%5D’. More in de-

tails, once the IllegalArgumentException exception

has been intercepted, the associated healing strategy pro-

ceeds by retrieving the uri parameter of the GetMethod

constructor, checking for the presence of characters not

allowed for an URI, re-encoding the string argument

to escape all the invalid characters (the new parameter

is "http://website/img/logo%5B1%5D.gif"), and finally

calling the constructor with this new uri.

3 Injection of Healing Strategies

Healing strategies are designed to heal specific faults and

misuses of OTS components, i.e., a healing strategy heals a

specific misuse/fault for a given OTS component, and are

implemented as healing connectors.



Healing connectors can be injected into target systems

at any time. The only requirement is the availability of the

binaries for the components (OTS or not) responsible for a

problem that can be healed.

Figure 2 shows the injection of the healing strategies in

existing component-based systems. The core business ap-

plication (top of the figure) uses both a runtime platform

and a common library as OTS components (bottom of the

figure). The self-healing layer lies between these two levels

and is composed by different healing connectors activated

by exceptions raised from methods that are known to in-

clude some of the faults that can be healed.

����
����
����
����
����
����
����

����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

Business

component

library

Common

Business

component

healing strategies

Runtime

platform

healing strategies

Core application

OTS components

connectors
Repository

Self−healing layer

Intercept exceptions

Intercept exceptions

Execute Raised exception

Raised exception

Execute

���
���
���

���
���
���

���
���
���

���
���
������
���
���

���
���
���

Figure 2: Integration in component-based systems.

We implemented our technology by using AOP tech-

niques, which provide an easy way to inject healing capabil-

ities in existing systems even if only binaries are available.

In particular, we used the AspectWerkz framework10, which

is a fast and flexible Java AOP framework.

Each healing connector includes two main parts: an in-

terceptor and code block and a healing code block.

Interceptors are implemented as advices, i.e., code

blocks that are executed when target operations are invoked.

Advices, and thus interceptors, can arbitrarily modify the

execution context, e.g., it is possible to change parameters

and to replace a method call with any operation sequence.

Healing code blocks consist of handleFault methods

that execute the sequence of actions necessary to fix the

current execution. Since several strategies can be tried for

a given fault, the various fault handlers are chained using

the chain of responsibility design pattern. Each fault han-

dler implements a common interface, tries to heal from the

original fault by performing its own healing strategy imple-

mented in the handleFault method. A contextual object

that contains the cause of the failure (e.g. exception type, er-

ror codes and messages) and the interception context (com-

ponents, method name and parameters) is passed between

the fault handlers.

At runtime, when an exception is returned by a method

10http://aspectwerkz.codehaus.org/

associated with healing connectors, the associated healing

strategies are activated. The general behavior consists of

identifying the possible causes of the observed failure and

triggering the execution of the corresponding healing ac-

tions, if any. If healing is not possible, the original excep-

tion is propagated.

2: notifies exception

throws exception

4: handleFault

1: calls method

3: throws exception
ALT

6: returns result or

5: executeHealing

7: returns result or throws exception

Fault Handler CalleeCaller Interceptor

exception

[Failure not identified]

[Else]

Figure 3: Messages exchanged between the caller and callee

components and the healing objects (interceptor, fault han-

dler).

Figure 3 shows the typical set of messages exchanged

when a method associated with healing connectors gener-

ates an exception. The invocation to a target method (mes-

sage 1) returns an exception that is intercepted by an inter-

ceptor (message 2). The interceptor then checks whether

the current problem can be handed by a fault handler. If

the problem cannot be handled, the original exception is

propagated to the caller (message 3). If the problem can

be handled, the interceptor retrieves the chain of handlers

associated with the current problem and delegates the heal-

ing to the first handler in the chain (message 4). Each han-

dler executes its healing action (message 5). If the healing

is successful, the result of the operation is returned to the

caller component. If the healing is not successful, the next

handler is applied. If all the handlers fail, the healing pro-

cess terminates with a failure and the original exception is

propagated (message 6 and 7).

4 Preliminary Experiments

In this section, we present an early evaluation that shows

effectiveness of the technique in healing faults in three case

studies related to the Spring framework, the Sun standard

J2SE distribution and the Sun database connectivity API,

which together with the running example covers the four

categories of strategies. In all the three cases, faults are

healed and executions can safely proceed.



Call operations and retry: We applied this strategy to

heal from the fault described in Bug ID SPR-31511. This

fault is related to the Spring framework and results in the

generation of a IllegalStateException when calling

the invoke method on a MethodInvoker object without

having prepared it. As indicated in the java documentation,

the correct usage of this method requires a previous call to

the prepare method.

The healing connector developed to heal this fault

implements a call operations + retry strategy which

executes the following actions: i) it intercepts the

IllegalStateException raised by the invoke method,

ii) it checks whether the invoker has been prepared or not,

iii) if yes, the exception is simply re-thrown, iv) if not, it

calls the prepare method and retry a call to the invoke

method. If the invocation succeeds the result of the invoke

method is returned to the caller, otherwise the original ex-

ception is re-thrown.

Replace calls: We applied this strategy to heal the

fault described in Bug ID 497635612. This fault

is related to the Sun J2SE version 6 and results in

a raised ClassNotFoundException when calling the

loadClass method with an array syntax parameter. It

has been frequently experienced when servers initialize

or when applicationsserialize/deserialize arrays of objects

(see for instance the fault description for Hibernate13).

A ClassNotFoundException is usually raised when a

classloader cannot find the class definition or fetch the byte

codes from the source. However, in this case, the error is re-

lated to an undocumented feature change, as loading an ar-

ray class with the array syntax has been disabled since JDK

1.6, but works correctly in previous versions. The faulty

behavior can be reproduced by using the Sun JDK 1.6 and

calling the loadClass method with any array syntax pa-

rameter, such as "[Ljava.lang.String".

To suitably load an array class, a possible workaround

reported by Sun is to use the extended form of

Class.forName() instead of the loadClass.

The healing connector developed to solve this prob-

lem implements a replace by an operation healing strat-

egy which performs the following actions: i) it in-

tercepts the ClassNotFoundException raised by the

loadClass method, ii) it checks whether the parameter

of loadClass uses the array syntax, iii) if it is the case,

it replaces the loadClass call by a call to the extended

Class.forName() operation with the original array syn-

tax parameter and the current classloader object. If the in-

vocation succeeds, the loaded array is returned, otherwise

the original exception is re-thrown.

11http://jira.springframework.org/browse/SPR-315
12http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4976356
13http://opensource.atlassian.com/projects/hibernate/browse/HHH-2990

As a final note, Sun does not expect to modify the imple-

mentation of the class loading or provide a fix this faulty be-

havior. The use of our technique appears to be particularly

relevant here, as a means to seamlessly integrate known

patches that are not provided by OTS providers.

Change environment and retry: We applied this

strategy to heal from a fault related to the Java Database

Connectivity API included in Sun J2SE distribution. The

failure caused by this fault consists of a SQLException

raised by method getConnection(url) of class

DriverManager. This error may have several source

causes (network failures, database crash). Among the many

possibilities, it can be the case that the DriverManager

have failed in locating a suitable driver, as indicated

in the url parameter. In this case, a SQLException

object containing the SQLState value of 08001 with a

"No suitable driver" error message is raised. The faulty

behavior can be reproduced by establishing a connec-

tion to a database, for example the MySQL database

with the url jdbc:mysql://localhost:3306/test

without having deployed its driver implementation

mysql-connectorJ.jar in the classpath.

The healing connector developed to address this prob-

lem implements a change environment and retry healing

strategy which performs the following actions: i) it inter-

cepts the SQLException raised by the getConnection

method, ii) it checks whether the SQLState code is 08001,

iii) if it is the case, it dynamically searches for the required

missing mysql-connectorJ.jar jar file from a prede-

fined location using the database subprotocol (mysql) and

a table mapping. If the jar is found, the healing connec-

tor dynamically loads the jar file, loads the driver class and

registers it to the DriverManager, and iv) retries the call

to the getConnection method. If the invocation succeeds

the resulting Connection object is returned to the caller,

otherwise the original exception is re-thrown. Note that in

this case, the technique healed from an incomplete deploy-

ment setup by dynamically changing the environment.

5 Related Work

Related work for healing or repairing functional faults

can be classified in the following categories: exception-

handling mechanisms, fault-tolerant techniques, self-

healing strategies and few approaches that focus on exe-

cution recovery and component adaptation.

Exception handling provide general mechanisms to im-

plement recovery techniques. However, since it is hard to

write correct recovery procedures, the implemented excep-

tion handlers are usually limited to the following strategies:

exception propagation, resources clean-up, retry or termi-

nation. Our approach rather aims at providing complete



recovery capabilities through predetermined healing strate-

gies, thus offering a higher-level of handling. It comes at the

cost of implementing the strategies. However, since we are

focusing on highly reusable OTS components, rather than

specific core applications, we target to benefit from their

frequent reuse in many systems. Other works have also

been done about maintainable, testing and improvement of

exception-handling [27, 26]. They are complementary to

our solution because they focus on aspects as the design

and maintenance of exception handlers, while we focus on

the implementation of healing strategies.

A large set of techniques under the wide field of fault-

tolerance are based on the ideas of exploiting redundant in-

formation and recovering to error-free states. For example,

N-version programming [2] and recovery blocks [25] rely

on multiple variants of a software module, with the hypoth-

esis that they fail independently. These techniques can be

effective to handle bugs that affect a minority of replicas

but are not effective for failures common to several mod-

ules. Moreover, they rely on the ability to achieve truly dif-

ferent versions of a same module, which seldom happens in

practice. Another work proposed to exploit redundancy in

software systems in a different way. Failing operations are

automatically replaced with equivalent sequences of opera-

tions implemented in the same application [6].

Our solution considers the use of redundancy as one

of the many ways to implement healing strategies. Com-

pared to the aforementioned approaches, our technique can

only address known faults, but can integrate any developer-

defined solution to heal faults. On the contrary, while re-

dundancy based techniques are not limited to known faults,

they rely on the existence of redundant modules and a way

to identify the one to apply, which is hard in practice.

Checkpoints and recovery techniques are used to set ap-

plications to an error-free state to enable servicing sub-

sequent requests. Recovery mechanisms are usually sup-

ported by exception handling and takes the forms of rolling

back to a previous checkpoint [12, 20] or rolling forward a

new legal state [23]. These techniques mostly focus on re-

covering from environment-dependent and transient failures

by re-setting the application to an error-free state and “for-

getting” failures, whereas our solution focuses on semantic

faults and recovers a currently failed operation.

Other self-healing strategies address application-

independent failures and mostly focus on non-functional

properties. Examples include reconfigurable archi-

tectures [14, 13], service-discovery mechanisms [10],

resources provisioning [28], and different kinds of com-

ponent reboots [5]. These techniques attempt to address

healing of faults without requiring a-priori knowledge of

the target applications. However, the healing actions that

are executed have little diversity and are extremely general.

On the contrary, our technique defines specific healing

strategies to address semantic faults. While it requires some

knowledge about the OTS components that are integrated

into a target system, our solution is in line with a previous

work that found that the majority of application faults are

independent of the operating environment and requires the

use application-specific knowledge to be fixed [7].

Few techniques focus on execution recovery from dif-

ferent point of views. Examples consist of the implemen-

tation of outcome-tolerant conditional branches [29], for

which program behavior may remain the same even if the

execution took the wrong path; specific actions to repair

data structures inconsistencies detected by violated con-

strains [11], and rolling-back/reexecuting the process in a

modified environment [24]. The technique presented in this

paper also aims to obtain correct executions, but recovery

actions are actuated at the level of components interfaces

or environment, to preserve component encapsulation. On

the contrary, the aforementioned approaches repair actions

at the code level (data structures and conditional branches).

Finally, several techniques use adaptation patterns to

handle component incompatibilities. For example, a selec-

tion of adaptation patterns based on a taxonomy is proposed

to handle functional and non-functional mismatches [3].

Compared to this approach, our solution is restricted to se-

mantic aspects but at the same time identifies more detailed

classes of faults related to method calls and uses the inter-

ceptor pattern to intercept raised exceptions and perform er-

ror recovery. Another work proposes a protective wrapper

for an OTS PID controller that detects erroneous informa-

tion going to and from the OTS and initiates simple recov-

ery actions [1]. Compared to this technique, our solution

propose a wider range of healing strategies that are only ac-

tivated on raised exceptions.

6 Conclusion

Designing suitable self-healing strategies that address

component integration faults is critical for modern systems

built from integrating OTS components. Various techniques

for detecting faults in the field have been proposed. How-

ever, they often do not define associated techniques to heal

the detected faults [21, 9, 16].

In this paper, we have i) presented a technique for de-

signing and integrating healing strategies for semantic in-

tegration faults detected by raised exceptions between core

applications and OTS components, ii) described the main

elements of the implementation based on aspect-oriented

techniques, and iii) reported preliminary experiments that

give evidence of the effectiveness of the technique to heal

problems in Open Source OTS components.

More work is needed to completely validate our proposal

and ongoing research is focusing on two main directions.

First, we will increase the set of available healing strate-



gies, and possibly enrich or refine the classes of faults that

can be addressed by our technique. This work will be in-

crementally completed by continuing the analysis of OTS

components API and the many bug reports in bug reposito-

ries. Second, we will perform further experiments with case

studies of different types and size to show general applica-

bility and effectiveness of the solution.

Acknowledgement

This work is partially supported by the European Com-

munity under the IST program of the 6th FP for RTD -

project SHADOWS contract IST-035157.

References

[1] T. Anderson, M. Feng, S. Riddle, and A. B. Romanovsky.

Protective Wrapper Development: A Case Study. In pro-

ceedings of the 2nd International Conference on COTS-

Based Software Systems, volume 2580 of Lecture Notes in

Computer Science, 2003.

[2] A. Avizienis. The N-Version Approach to Fault-Tolerant

Software. IEEE Transactions on Software Engineering,

11:1491–1501, 1985.

[3] S. Becker, A. Brogi, I. Gorton, S. Overhage, A. Ro-

manovsky, and M. Tivoli. Towards an Engineering Ap-

proach to Component Adaptation. In Architecting Sys-

tems with Trustworthy Components, volume 3938 of Lecture

Notes in Computer Science, 2004.

[4] B. Cabral and P. Marques. Exception Handling: A Field

Study in Java and .NET. In proceedings of the 21st European

Conference on Object-Oriented Programming, volume 4609

of Lecture Notes in Computer Science, 2007.

[5] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and

A. Fox. Microreboot — A Technique for Cheap Recovery.

In proceedings of the 6th Symposium on Operating Systems

Design and Implementation, 2004.

[6] A. Carzaniga, A. Gorla, and M. Pezzè. Self-Healing by

Means of Automatic Workarounds. In proceedings of the

3rd Workshop on Software Engineering for Adaptive and

Self-Managing Systems, 2008.

[7] S. Chandra and P. M. Chen. Whither Generic Recovery from

Application Faults? A Fault Study using Open-Source Soft-

ware. In Proceedings of the 1st International Conference on

Dependable Systems and Networks. IEEE Computer Soci-

ety, 2000.

[8] E. M. Clarke and J. M. Wing. Formal Methods: State of

the Art and Future Directions. ACM Computing Surveys,

28(4):626–643, 1996.

[9] F. Cristian. Exception Handling and Software Fault Tol-

erance. IEEE Transactions on Computers, 31(6):531–540,

1982.

[10] C. Dabrowski and K. Mills. Understanding Self-healing in

Service-discovery Systems. In proceedings of the 1st Inter-

national Workshop on Self-Healing Systems. ACM, 2002.

[11] B. Demsky and M. Rinard. Automatic Detection and Repair

of Errors in Data Structures. SIGPLAN Notices, 38, 2003.

[12] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. John-

son. A Survey of Rollback-recovery Protocols in Message-

passing Systems. ACM Computing Surveys, 34:375–408,

2002.
[13] D. Garlan and B. Schmerl. Model-based Adaptation for

Self-healing Systems. In proceedings of the 1st Interna-

tional Workshop on Self-Healing Systems. ACM, 2002.
[14] I. Georgiadis, J. Magee, and J. Kramer. Self-organising Soft-

ware Architectures for Distributed Systems. In proceedings

of the 1st International Workshop on Self-Healing Systems.

ACM, 2002.
[15] S. L. Graham and S. P. Rhodes. Practical Syntactic Error

Recovery. Communications of the ACM, 18:639–650, 1975.
[16] J. Gray and A. Reuter. Transaction Processing: Concepts

and Techniques. Morgan Kaufmann, 1992.
[17] J. O. Kephart and D. M. Chess. The Vision of Autonomic

Computing. IEEE Computer, 36(1):41–50, 2003.
[18] J. Li, G. Huang, J. Zou, and H. Mei. Failure Analysis of

Open Source J2EE Application Servers. In proceedings of

the 7th International Conference on Quality Software. IEEE

Computer Society, 2007.
[19] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. Have

Things Changed Now?: an Empirical Study of Bug Charac-

teristics in Modern Open Source Software. In proceedings

of 1st Workshop on Architectural and System Support for

Improving Software Dependability, 2006.
[20] D. Lorenzoli, L. Mariani, and M. Pezzè. Towards Self-

Protecting Enterprise Applications. In proceedings of 18th

IEEE International Symposium on Software Reliability En-

gineering, 2007.
[21] B. Meyer. Applying “Design By Contract”. IEEE Computer,

1992.
[22] M. Pezzè and M. Young. Software Testing and Analysis:

Process, Principles and Techniques. Wiley, April 2007.
[23] D. K. Pradhan and N. H. Vaidya. Roll-Forward Checkpoint-

ing Scheme: A Novel Fault-Tolerant Architecture. IEEE

Transactions on Computers, 43:1163–1174, 1994.
[24] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treat-

ing Bugs as Allergies—A Safe Method to Survive Software

Failures. In proceedings of the 20th ACM Symposium on

Operating Systems Principles, 2005.
[25] B. Randell. System Structure for Software Fault Tolerance.

In proceedings of the International Conference on Reliable

software. ACM, 1975.
[26] M. P. Robillard and G. C. Murphy. Static Analysis to Sup-

port the Evolution of Exception Structure in Object-oriented

Systems. ACM Transactions on Software Engineering and

Methodology, 12:191–221, 2003.
[27] S. Sinha and M. J. Harrold. Criteria for Testing Exception-

Handling Constructs in Java Programs. In proceedings of the

15th International Conference on Software Maintenance,

1999.
[28] B. Urgaonkar and A. Chandra. Dynamic Provisioning of

Multi-tier Internet Applications. In Proceedings of the 2nd

International Conference on Autonomic Computing. IEEE

Computer Society, 2005.
[29] N. Wang, M. Fertig, and S. Patel. Y-Branches: When You

Come to a Fork in the Road, Take It. In proceedings of the

12th International Conference on Parallel Architectures and

Compilation Techniques. IEEE Computer Society, 2003.


