
AN XML VIEW OF THE “WORLD”

Ezio Bartocci and Emanuela Merelli
Dipartimento di Matematica e Informatica, Università di Camerino

via Madonna delle Carceri, I-62032 Camerino, Italia
Email: ezio.bartocci, emanuela.merelli@unicam.it

Leonardo Mariani
Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano Bicocca

via Bicocca degli Arcimboldi, 8, I-20126 Milano, Italia
Email: mariani@disco.unimib.it

Key words: Coupling and Integrating Heterogeneous Data Sources, Wrapper, XML.

Abstract: The paper presents ”Any Input XML Output” (AIXO), a general and flexible software architecture for wrap-
pers. The architecture has been designed to present data sources as collections of XML documents. The use of
XSLT as extraction language permits extensive reuse of standards, tools and knowledge. A prototype devel-
oped in Java has been effectively proven in several case studies. The tool has also been successfully integrated
as a wrapper service into BioAgent, a mobile agent middleware specialized for use in the molecular biology
domain.

1 Introduction

The World Wide Web (WWW) was essentially de-
veloped as a vehicle for the exchange of documents
and data between human users distributed among In-
ternet hosts. Today Internet applications are being de-
signed and developed to access Internet resources as
documents, data and services. Since the WWW was
originally conceived for human users, it is not ma-
chine readable (Berners-Lee et al., 2001), and thus
unsuitable to support the issues raised by the present
scenario, at least until its conversion into a Semantic
WWW.

Generally, Internet applications are complex and
designed to support users’ activities in special appli-
cation domains (ecommerce, medicine, tourism, ...).
To support the coordinated execution of multiple dis-
tributed activities in an open scenario like Internet,
suitable abstractions and tools to model and enable
effective world wide access to Internet data and ser-
vices are required. Typically, the execution tasks, as-
sociated to activities, include data research and data
extraction from distributed heterogeneous data repos-
itories.

In recent years, different technologies and stan-
dards have been developed to automate the research,
integration and elaboration phases, but a uniform
framework has yet to be developed. Notwithstand-
ing standards definitions like XML (W3C, 2000a),
XSL (W3C, 2001) and XSLT (W3C, 1999) for data

description and portability, and UDDI (Bellwood
et al., 2002) and WSDL (W3C, 2002b) for service
access and discovery, machines still cannot automat-
ically access Internet resources because of semantic
and syntactic heterogeneity. The semantic gap re-
mains an unsolved problem. Services or documents,
which in theory are integrable, in practice cannot be
fully processed because the same piece of informa-
tion is stored using a different structure or different
terms. We believe that the definition of shared on-
tologies (Gruber, 1993) would simplify the semantic
integration of heterogeneous data sources. While the
semi-structured nature of XML and the use of meta-
languages such as DTD or XML-Schema might make
documents machine-readable (W3C, 2001), the prob-
lem would still remains, since for the most part In-
ternet resources continue to be non-XML. At present
only web service developers provide XML documents
as exchange format.

In the scenario presented here, wrapper technol-
ogy plays an important role. A wrapper adds a layer
of abstraction to a resources access system, allow-
ing for previously impossible interactions. For ex-
ample, wrappers to present HTML pages as XML
documents can be constructed. The wrapper is not a
stand-alone solution, but is often used with other tools
such as multi-agent systems (Müller, 1999; Sudmann
and Johansen, 2001; Kolp et al., 2001) and Web Ser-
vices (Pierce et al., 2002; Kreger, 2001). Many wrap-
pers have been proposed in the literature, but each is

1

specialized for a particular type of resource. In the
context of heterogeneity we believe that a wrapper
customized for a specific application domain helps to
achieve an ”XML view of the world”. By customiz-
able wrapper, we mean a software component that can
adapt to the different data sources that characterize the
application domain.

In this paper we propose AIXO, a wrapper archi-
tecture suitable for the presentation of any data source
as a collection of XML documents. AIXO’s flexibil-
ity and modularity allow for management of many in-
put data sources ranging from HTML to XML, from
databases to flat file, from CGI to command line pro-
grams. XML has been chosen as the output format
to enhance portability and flexibility; XML permits
a broad reuse of existing standards and technologies
such as data models, parsers, and tools. AIXO’s out-
put can also be forced to comply with a well defined
XML structure, and can provide the final user with
a syntactic and semantic homogeneous “view of the
world”. The proposed AIXO architecture has been
experimentally proven on different resources in dif-
ferent contexts and successfully integrated as wrapper
service in BioAgent (Merelli et al., 2002) - a mobile
agent-based middleware. We emphasize that the inte-
gration of AIXO in an agent-based middleware rep-
resents, in the context of the present paper, one of
many contexts where a generalized wrapper could be
proved. Therefore, we will not enter into details of
MAS (Multi-Agent Systems).

The paper is organized as follow. Section 2 de-
scribes the background of the work. Section 3 intro-
duces the AIXO architecture and Section 4 discusses
experimental results. Section 5 describes integration
of AIXO with BioAgent. Section 6 presents related
works, and Section 7 outlines future research direc-
tions and presents conclusions.

2 Background of the Work

XML XML (W3C, 2000a) – the eXtensible Markup
Language – has recently emerged as a new standard
for data representation and exchange on the Inter-
net. XML supports electronic exchange of machine-
readable data on the Web. The basic ideas underlying
XML are very simple: tags on data elements iden-
tify the meaning of the data, rather than specifying,
for example, how data should be formatted. The rela-
tionships between data elements are provided through
simple nesting and references. XML data files can be
presented through specifications in XSL, the eXten-
sible Stylesheet Language (W3C, 2001). Any XML
document can contain an optional description of its
grammar for use by applications that require struc-
tural validation. The grammar portion is called XML-

schema (W3C, 2001).
XML has been applied with success in several con-

texts such as data description and integration (IONA,
2002), communication protocols (W3C, 2000b) and
provision of services (W3C, 2002a).

XSLT XSLT is part of the XSL language and de-
fines the syntax and semantics of a language capa-
ble of transforming XML documents into other XML
documents. An XSLT transformation defines the re-
quirements for transformation of an input document
to an output document.

Since XSLT is a well-known language, the use of
AIXO would be relatively simple and easily learned.
The wrapper architecture has been developed using
XML standards, therefore we will take advantage of
new standards and new XML tools, integrating them
in the proposed architecture.

There are different XSLT processors
compliant with XSLT standards, such as
DGXT (http://www.datapower.com/products/),
iXSLT (http://www.infoteria.com/), Xalan
(http://xml.apache.org/xalan-j/) and XT
(http://www.blnz.com/xt/). We have decided to
use Xalan from Apache Software Foundation, be-
cause it was developed in Java as AIXO. Xalan is
compliant with the lastest recommendations and
provides good performance.

JDOM JDOM (http://www.jdom.org) is a Java
implementation of Document Object Model
(DOM) (W3C, 1998) a standard model defined
to manage XML documents. It provides a robust,
lightweight framework for reading and writing XML
documents. JDOM interacts with the Simple API for
XML (SAX) parser and the Document Object Model
(DOM) parser, therefore allowing for the reception
of XML elements from both of the above-mentioned
parsers.

MAS An agent is an active autonomous entity
which can communicate with other agents and hu-
man users. Agents often possess other capabil-
ities such as benevolence and mobility. Agents
are grouped together to form a Multi-Agent System
(MAS) (R.Jennings et al., 1998). Complex tasks can
be successfully executed by agents through the coor-
dination of their actions. An autonomous agent must
know the environment in which it operates or intends
to operate. In an open Internet scenario, a mobile
agent must be capable of accessing remote resources.

Previously (Merelli et al., 2002), we developed
a multi-agent system populated with mobile agents.
These agents move among hosts of a network and can
access local resources and services. We will discuss
the integration of AIXO in BioAgent in Section 5.

2

AIXO

ResourceToXML

XSLTProcessorResourceAccess

ResourceToXMLReader

toXMLReader(input : Object) : java.io.Reader
...()

DataSource

getAccess(parameter : Object) : Object...

Wrapper

addXSLTFilter(pathfile : String) : void
retrievalXMLDocument(parameter : Object) : org.jdom.Document
Wrapper(access : DataSource, XMLResource : ResourceToXMLReader, engine : WaterfallXSLTProcessor)

1+XMLResource 1
1

+access
1

WaterfallXSLTProcessor

addXSLTFilter(pathfile : String) : void
getDocument(input : java.io.Reader) : org.jdom.Document
WaterfallXSLTProcessor()
...()

1 +engine1

Figure 1: AIXO architecture

3 AIXO Architecture

The AIXO architecture is not for a specific resource
or data type; rather, it is general and suitable for a
wide range of resources. An AIXO implementation
offers a wrapper that provides an “XML view of the
resource”. In the context of this paper, a resource is
defined in terms of schema and value. In some cases
the schema may be absent, e.g., flat file. Resources
are grouped into families: two resources belong to
the same family if they share the same schema extrac-
tion rules. The AIXO architecture, shown in Figure 1,
is composed of three main components: ResourceAc-
cess, ResourceToXML, XSLTProcessor.

ResourceAccess manages access to the resource
to be wrapped. Its implementation depends upon
the communication protocol, permissions, and access
policies. By using the ResourceAccess’s interface,
data can be gathered from the resource in its native
format; there is no transformation. For example, in
the case of a Relational DataBases (RDB), the data
obtained is contained in a “recordset”.

ResourceToXML transforms data, provided by the
ResourceAccess component, into XML. The transfor-
mation is canonical and independent of the data’s se-
mantics. Mapping from the original format to XML is
performed considering only the data’s structure. For
example, in transforming a recordset to XML, the
output conforms exactly to the schema of the table;
in the case of a flat file, the transformation will de-
rive its structure taking into account special charac-
ters such as tabular and white spaces. For an HTML
text, the transformation extracts the document schema
from the tags.

Finally, the XSLTProcessor applies a set of XSLT
filters to the raw XML, provided by the Resource-
ToXML, to obtain the effective XML view of the re-
source. In this phase, the semantics of data plays an

important role.
To create a concrete wrapper the DataSource and

ResourceToXMLReader Java classes must be imple-
mented and the XSLTProcessor must be configured
using the appropriate set of XSL Transformations.
Each wrapper is defined by an XML configuration
file. The system automatically loads classes and ini-
tializes attributes.

Thanks to inheritance of OOP languages, in our
case Java, we obtain a flexible architecture and fam-
ilies of reusable components, allowing for the defini-
tion of new wrappers by reusing existing components.
Below, we describe implementation details for each
component.

ResourceAccess

The ResourceAccess component provides physical ac-
cess to a resource. Whenever we need to read the
data contained in a resource we must comply to the
interaction rules required by the resource type. For
example, if we need to read the data contained in
a database, we will probably interact with a DBMS,
while if we need to read data from a flat file we will
probably use API. The DataSource abstract class pro-
vides a uniform way to access a resource by an acti-
vating method invoked each time a request is issued.
The parameter of this method is a query that selects
the data that must be extracted. The query format de-
pends upon the target resource and can be expressed
in well-know language, e.g. SQL, or in a proprietary
language. The XML data model suffers with large
resources (a resource containing a large amount of
data), but the query avoids the transformation of the
whole resource by selecting only a small portion of
data. The access to a resource may require several
parameters affecting the extraction phase, e.g., user-
name and password in the case of a secure resource or

3

the URL, and the access method in the case of a web
source. Each DataSource implementation is equipped
with an XML configuration file storing all useful in-
formation. The final result provided by this class is
data stored in a native format, for which no transfor-
mation is performed.

Similarly to the Tambis mediator architecture
(Baker et al., 1998), the activating method can be in-
voked by a mediator that receives requests expressed
in a standard language, and maps them in a resource
specific format. In AIXO, the requests are performed
by executing the access method with the query as pa-
rameter. Then the ResourceToXML and the XSLT Pro-
cessor components receive and transform each result
to a common XML schema. Finally, the mediator
collects and merges all responses, providing the re-
questor with a unified result. We aim extending AIXO
by developing a mediator to play this role in the sys-
tem.

When the DataSource abstract class is imple-
mented for a specific resource type, the getAccess
method (shown in Figure 1) that selects a portion of
the data based upon the query, must be implemented.
If the target resource is a service, the implementation
of the method will stimulate the service according to
the query. In the case of an access to a static HTML
page the parameter is composed of two strings (key,
value) used to construct the query string or the body
of the message depending upon the format of the re-
quest (HTTP Get or HTTP Post).

We have implemented classes allowing access to
RDB, command line programs and web pages. This
family of classes need not be implemented each time
from scratch; in fact for similar resources it is often
sufficient to update the XML configuration file.

ResourceToXML

The ResourceToXML component transforms data ob-
tained from the ResourceAccess component to raw
XML by looking exclusively at the syntax, so that the
same transformation is used for all data in the same
family. The goal of this step is to obtain a first XML
representation of the data, whether it differs consid-
erably from the intended structure or not. For exam-
ple, the mapping from relational data extracted from
a database to XML is performed by representing each
record and all its fields in the target XML schema. If
the document we obtain has a richer schema, further
elaborations are facilitated (performed in the third
step); on the contrary, if the document structure is
poor, it will be difficult to perform complex seman-
tic transformations.

We have initially considered three groups contain-
ing several families: unstructured, semi-structured
and structured resources. For the first group,
we have developed classes which translate to

XML both, flat files in LALR(1) grammar and
files without a well-defined grammar. The
first transformation is performed by Chaperon
(http://chaperon.sourceforge.net), while the latter is
performed by hand-coding the extraction rules in
the component. In the case of semi-structured
data, we have considered XML and HTML data
sources and developed the related classes. In the
case of HTML, the Java class uses Jtidy Parser
(http://sourceforge.net/projects/Jtidy) to remove syn-
tactical errors and transform an HTML document in a
well-formed XHTML document. In the case of struc-
tured data, we are presently considering only RDB
recordset.

XSLTProcessor

The XSLTProcessor component performs transfor-
mations to enable viewing of XML data according
user requirements. The mapping from a raw XML
data to the final desired XML document is executed
applying a sequence of XSLT filters. Each filter maps
an XML document to another XML document. The
final result, after the application of all filters, is an
XML document compliant with the desired structure.
The information necessary to the component for the
dynamic application of the XSL Transformations are
stored in an XML configuration file. The behavior of
the XSLTProcessor component is fully implemented
and configuration is the only activity that must
be performed to specialize the component for a
particular resource.

The wrapping process entails three steps, each
clearly separating considerations of objectives. As
the first step, AIXO accesses the resource and collects
data in its “native” format. The second step is a syn-
tactic transformation that maps the “native” format to
XML. The last step applies a sequence of XSLT filters
through which the final XML document is obtained.
Figure 2 shows the flow of methods calls . The wrap-
ping process is a pipe of three activities.

4 AIXO in action

AIXO has been experimentally proven on differ-
ent resources in different contexts. In one exam-
ple the web White Pages of two countries are col-
lected in one large virtual repository through a com-
mon XML view. In example two, AIXO has been
used to present a flat file as an XML file; this file con-
tains biological data. Finally, we make AIXO inter-
act with GAMS (http://www.gams.com/), a problem
solving tool. AIXO executes GAMS in the command
line modality, and it captures GAMS input and out-

4

Wrapper: Wrapper DS: DataSource
XMLresource: ResourcetoXMLRead

er
engine: WaterfallXSLTProcessor

2: return input:Object

4: return stream:java.io.Reader

6: return doc:org.jdom.Document

1: getAccess(parameter)

3: toXMLReader(input)

5: getDocument(input)

Figure 2: Operations performed during wrapping

put streams. Our next objective is to apply AIXO to
BLAST, a very important command line tool in the
molecular biology domain.

Example 1: HTML Semi-structured
data

To test AIXO, we considered Italian White pages
(http://paginebianche.virgilio.it/) and French White
pages (http://wfe.pagesjaunes.fr/pb.cgi). The test is
intended to demonstrate how the wrapper works with
HTML pages, and how it facilitates the integration
of information stored in web pages. In this case
we need two wrappers, one for French White Pages
and the other for Italian White Pages. Both wrap-
pers contain the new HTMLDataSource class that is
a specialization of the DataSource class. HTML-
DataSource allows connection through HTTP proto-
col to a remote resource with a GET or POST request.
Next the HTMLToXMLResource class, by the JTIDY
parser, is used to normalize and transform HTML into
XHTML. The XSLTProcessor component ultimately
– using a XSLT filter – isolates data from the XHTML
tags and inserts them into a more useful XML struc-
ture. In this example we have used two XSLT filters:
one for the French White Pages and the other for Ital-
ian White Pages. Figures 3 and 4 show final XML
documents.

Example 2: Unstructured Data

Flat files are commonly used because they can be eas-
ily written by text editor. Figure 5 provides an exam-
ple of a flat file describing the result of a biological
experiment; the file has been retrieved from the GEO
Web site (http://www.ncbi.nlm.nih.gov/geo/).

Figure 3: French White Pages

To wrap the file, we extended the DataSource class,
extracted the LALR(1) grammar generating the flat
file, and generated the correspondent XML document
using the ResourceToXML component. This mapping
is performed by mapping each element of the syn-
tax to an XML element. Finally, we applied the set
of XSLT filters using the XSLTProcessor component.
This set of filters suppresses some meaningless el-
ements and modifies the structure of the other ele-
ments. The result of the elaboration is shown on Fig-
ure 6.

Example 3: Command Line Program

In scientific research, access to command line pro-
grams and extraction of data from the output of these
programs is often required. This is true in the case of
Blast (http://www.ncbi.nlm.nih.gov/BLAST/), which
is commonly used in molecular biology research. In

5

Figure 4: Italian White Pages

P̂LATFORM=GPL28

!Platform sample d=GSM11

!Platform sample id=GSM12

!Platform sample id=GSM13

ID	ROW	COLUMN	GENE

1	1	1	”Human mRNA for alpha-catenin, complete
cds”

2	3	2	”Human ETS2 gene”

Figure 5: A Flat File Containing Biological Data

this paper we consider GAMS, used to solve lin-
ear programming problems in the operative research
field. To build a wrapper for the GAMS output, we
use the cmdLineDataSource, a specialization of the
DataSource class that captures the output of the pro-
gram in a stream. To interpret GAMS output, we have
implemented a new extended class from Resource-
ToXMLReader called GAMSToXMLReader. As final
step, we define the filter required to extract only the
information we require. Figure 7 contains the GAMS
output and Figure 8 shows the XML before the filter
application.

5 Integration of AIXO in BioAgent

BioAgent (Merelli et al., 2002) enables information
retrieval and distributed computations that adopt the
mobile agent paradigm. An agent of the system inter-

<?xml version=”1.0” encoding=”UTF-8”?>
<Gene Platform>

<platform id=”GPL28”/>
<samples>

<sample id=”GSM11”/>
<sample id=”GSM12”/>
<sample id=”GSM13”/>

</samples>
<MACROArray>

<gene id=”1” row=”1” column=”1”>”Human mRNA for
alpha-catenin, complete cds”</gene>
<gene id=”2” row=”3” column=”2”>”Human ETS2 gene”</gene>

</MACROArray>

</Gene Platform>

Figure 6: XML document containing biological data

acts with other agents to accomplish its tasks. Typi-
cally, a task includes access to several resources and
services, but agents often do not know how to interact
with all types of resources. The goal is to provide
the agent with the “XML view of the world”. All
wrapped resources are provided to agents as XML
documents. The transformation of a resource con-
cerns not only syntactic heterogeneity, but also se-
mantic problems. So the final resource presentation
style must be comprehensible to an agent, thus over-
coming any syntactic and semantic issues. The use
of ontologies (Fensel, 2001) might provide a way to
specify the admissible output structure of a resource.

6

Figure 7: Command Line Program

BioAgent provides access to resources using both
ontologies and wrappers. AIXO is used both to
present resources as XML documents and to map
XML-based ontologies. A document compliant with
one ontology can be translated into a document com-
pliant with another document. Results are encourag-
ing; agents interact correctly with all resources and
management of ontologies is simplified. A typical
interaction between a bioscientist and BioAgent in-
volves the following steps (Figure 9):

1. A BioScientist specifies the set of tasks to be per-
formed.

2. The system generates a pool of agents to execute
the task.

3. Agents migrate and clone in order to efficiently ac-
complish the task.

4. Agents query resources. AIXO implements the
abstraction layer so that agents interact only with
XML documents. In cases agents expect differ-
ent type of documents (ontologies mismatching),
AIXO can map documents together.

5. Agents merge results and furnish data to the biosci-
entists.

We have tested this system by clustering extensive
DNA-microarray data retrieved from the GEO Web
site. For the moment, interactions appear in read-only
mode; we are investigating the possibility of access-
ing and modifying a resource using the XML docu-
ment abstraction.

. . .

<?xml version="1.0"?>
<GamsOutput>
 <Date>23:57:47</Date>
 <Time>10/06/02</Time>
 <Title>Food manufacture Example</Title>
 <model>
 <Header>
 Food manufacture example 12.1
 H.P. Williams
 Model Building in Mathematical programming
 John Wiley and Sons
 Pag. 245-246, 272-274
 Single period example
 </Header>
 <sets>
 <set name="Oils">
 <description></description>
 <index>Veg1</index>
 <index>Veg2</index>
 <index>Oil1</index>
 <index>Oil2</index>
 <index>Oil3</index>
 </set>
 <set name="VegOil(Oils)">
 <description>Vegetable Oils</description>
 <index>Veg1</index>
 <index>Veg2</index>
 </set>
 <set name="NonVegOil(Oils)">
 <description>NonVegetable Oils</description>
 <index>Oil1</index>
 <index>Oil2</index>
 <index>Oil3</index>
 </set>
 </sets>

Figure 8: GAMS raw XML Document

6 Related Works

According to Kushmerick (Kushmerick, 1997)
we can distinguish two main categories of wrap-
pers: Hand-Coding Wrappers and Boosted Wrappers.
Boosted Wrappers can learn, after an initial learning
stage, how a document is structured and how to ex-
tract its data. Hand coding wrappers are configured
by human users or with the support of tools that allow
automatic configuration. The drawbacks of Boosted
Wrappers are limited expressive power and the large
number of required sample pages (Baumgartner et al.,
2001b). AIXO belongs to the Hand-coding wrap-
per category; Table 1 describes the main features of
AIXO compared to other widely used wrapper gen-
eration systems. NoDoSE (Adelberg, 1998) extracts
data from the structured text document and considers
HTML as a special case. XWrap (Liu et al., 2000)
wraps HTML pages and assesses possible changes in
the resource’s structure. W4F (Sahuguet and Aza-
vant, 1999b; Sahuguet and Azavant, 1999a) uses an
SQL-like query language called HEL, but provides

7

Internet

BioAgent

WrapperService

Place Agents

WebInterfaceService

OntologyService

Workflow
Management

Servlet

UserAgents

Client(BioScientist)

1 Workflow

XML

HTTP
HTTP

BioAgent

WrapperService

Place

Agents

WebInterfaceService

OntologyService

Workflow
Management

Servlet

Bioinformatic
 WebServer

PDF

HTML

RDBMS

2

UserAgents

Wrappers

...

3

4

UserAgent

UserAgent

UserAgent

UserAgent

UserAgent

HTTP

5

Client(BioScientist)

HTTP

Figure 9: Interactions between agents and wrappers

little ease-of-handling. The user must be expert in
the use of HEL and HTML to develop a wrapper.
Lixto (Baumgartner et al., 2001b; Baumgartner et al.,
2001a), thanks to GUI, allows the user to develop
wrappers without knowledge of its extraction lan-
guage Elog, but also deals essentially with HTML.

The problem of efficiently managing XML docu-
ments has been recently addressed in XMLTK (Avila-
Campillo et al., 2002), a scalable toolkit enabling the
manipulation of XML elements with a low memory-
consumption.

AIXO, unlike the above systems, is an easily ex-
tendible architecture that promotes reusage of devel-
oped components. Classes developed and used for a
particular type of resource can be shared with the rest
of the community. The wrapping procedure is simple
and linear involving three clearly distinct steps with
different purposes: resource access, raw XML extrac-
tion, and generation of the final XML document.

Modularity, reuse and flexibility improve diffusion,
but hinder performance. In fact the three steps could
be optimized into one step. We propose the applica-
tion of AIXO in contexts where performances are not
the primary issue. To deal with a wide range of re-
sources AIXO has been designed to support several
protocols and resources. AIXO lacks a resource mon-
itor, automatic wrapper generation and GUI, all sys-
tem’s parts that we aim to develop in the next version
of AIXO.

7 Future Works and Conclusions

In this article we have presented Any Input XML
Output (AIXO), a flexible and general wrapper archi-
tecture whose key features are flexibility, simplicity,
the use of XSLT as extraction language, and the ca-
pacity to reuse and share implemented components.
The use of XSLT permits the integration of existing
tools and technologies into the system. Adoption of a
standard language also means that a user approaching
AIXO for the first time can employ previous knowl-
edge to the new task. Running AIXO involves three
distinct steps, each with different objectives and em-
ploying different technologies. These clear distinc-
tions increase simplicity.

We use our Java implementation to evaluate the ef-
fectiveness of the system in different contexts: web
pages, flat files and command line programs. We also
integrate AIXO into BioAgent to facilitate access to
resources and services. All results are encouraging.
In the near future we intend to develop classes to wrap
BLAST, a popular and widely used tool in the molec-
ular biology field.

The use of a standard and well known language
such as XSLT does not necessarily mean a more sim-
plified method of constructing transformations. Our
goal is to develop a graphic environment for the def-
inition of XSLT transformation. The simplicity and
intuitive use of a visual language would simplify the
work of a generic user. A graphic console would also
facilitate configuration of parameters and the creation
of XML configuration files for all components of the
systems.

Future work concerns the definition of a public
repository for implemented classes to simplify shar-
ing and reuse of implemented access protocols or
XML transformers.

REFERENCES

Adelberg, B. (1998). NoDoSE a tool for semi-automatically
extracting structured and semistructured data from
text documents. In Proceedings of the 1998 ACM
SIGMOD international conference on Management of
data, pages 283–294. ACM Press.

Avila-Campillo, I., Green, T. J., Gupta, A., Onizuka, M.,
Raven, D., and Suciu, D. (2002). XMLTK: An XML
toolkit for scalable XML stream processing. In Pro-
ceedings of Programming Language Technologies for
XML (PLANX), Pittsburgh, PA.

Baker, P., Brass, A., Bechhofer, S., Goble, C., Paton, N.,
and Stevens, R. (1998). Tambis: Transparent access
to multiple bioinformatics information sources. In
Proceedings of the Sixth International Conference on
Intelligent Systems for Molecular Biology, ISMB98,
Montreal.

8

System GUI Input Output Architecture
Flexibility GPL Extraction

Language Access Resource
Monitor

XWrap Y HTML XML N N XWrap HTTP (Get) Y

W4F Y HTML
XML,
Java
Classes

N N HEL
HTTP
(Get and
Post)

N

NoDoSe Y
Structured
Text
Document

Generic
or DBMS

N N NoDoSe HTTP (Get) N

Lixto Y HTML XML N N Elog HTTP (Get) N

AIXO N

HTML,
XML,
DBMS,
FlatFile

XML Y Y XSLT

HTTP (Get
and Post)
JDBC-ODBC,
Filesystem

N

Table 1: Systems Comparison

Baumgartner, R., Flesca, S., and Gottlob, G. (2001a). Su-
pervised wrapper generation with Lixto. In The VLDB
Journal, pages 715–716.

Baumgartner, R., Flesca, S., and Gottlob, G. (2001b). Vi-
sual web information extraction with Lixto. In The
VLDB Journal, pages 119–128.

Bellwood, T., Clément, L., Ehnebuske, D., Hately, A.,
Hondo, M., Husband, Y. L., Januszewski, K., Lee, S.,
McKee, B., Munter, J., and von Riegen, C. (2002).
UDDI version 3.0. Published specification, Oasis.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The
semantic web. Scientific American, 284:34–43.

Fensel, D. (2001). Ontologies: A Silver Bullet for
Knowledge Management and Electronic Commerce.
Springer-Verlag.

Gruber, T. R. (1993). A translation approach to portable
ontologies. Knowledge Acquisition, 5(2):199–220.

IONA (2002). http://www.iona.com/.
Kolp, M., Giorgini, P., and Mylopoulos, J. (2001). A goal-

based organizational perspective on multi-agents ar-
chitectures. In In Proceedings of the Eighth Interna-
tional Workshop on Agent Theories, architectures, and
languages (ATAL-2001), Seattle, USA.

Kreger, H. (2001). Web services conceptual architecture
(WSCA 1.0). Technical report, IBM Software Group.

Kushmerick, N. (1997). Wrapper Induction for Information
Extraction. PhD thesis, University of Washington.

Liu, L., Pu, C., and Han, W. (2000). XWRAP: An XML-
enabled wrapper construction system for web infor-
mation sources. In International Conference on Data
Engineering (ICDE), pages 611–621.

Merelli, E., Culmone, R., and Mariani, L. (2002). Bioa-
gent: A mobile agent system for bioscientists. In NET-
TAB02 - Agents in Bioinformatics, Bologna.

Müller, M. E. (1999). An intelligent multi-agent architec-
ture for information retrieval from the internet. Tech-
nical report, Institute for Semantic Information Pro-
cessing.

Pierce, M., Youn, C., and Fox, G. (2002). Application web
services. Technical report, Community Grid Labs, In-
diana University.

R.Jennings, N., Sycara, K., and Wooldridge, M. (1998). A
roadmap of agent research and development. Interna-
tional Journal of Autonomous Agents and Multi-Agent
Systems, 1(1):7–38.

Sahuguet, A. and Azavant, F. (1999a). Looking at the web
through XML glasses. In Conference on Cooperative
Information Systems, pages 148–159.

Sahuguet, A. and Azavant, F. (1999b). Web ecology: Re-
cycling HTML pages as XML documents using W4F.
In WebDB, pages 31–36.

Sudmann, N. P. and Johansen, D. (2001). Supporting mo-
bile agent applications using wrappers. In DEXA
Workshop 2001, pages 689–695.

W3C (1998). Document object model (DOM) level 1 spec-
ification. W3C recommendation, W3C.

W3C (1999). XSL transformations (XSLT) version 1.0.
W3C recommendation, W3C.

W3C (2000a). Extensible markup language (XML) 1.0
(second edition). W3C recommendation, W3C.

W3C (2000b). Simple object access protocol (SOAP) 1.1.
W3C note, W3C.

W3C (2001). Extensible stylesheet language (XSL) version
1.0. W3C recommendation, W3C.

W3C (2001). XML schema part 0: Primer. W3C recom-
mendation, W3C.

W3C (2002a). Web service description usage scenarios.
W3C working draft, W3C.

W3C (2002b). Web services description language (WSDL)
version 1.2. W3C working draft, W3C.

9

